Source code for robokit.lie.so3

import abc
from typing import TYPE_CHECKING, Literal, Optional, Union, overload

import numpy as np
import pinocchio as pin

from robokit.types import ArrayLike


try:
    import torch  # torch is optional

    _TORCH_AVAILABLE = True
except ImportError:
    _TORCH_AVAILABLE = False


try:
    import warp as wp  # warp is optional

    _WARP_AVAILABLE = True
except ImportError:
    _WARP_AVAILABLE = False

if TYPE_CHECKING:
    from robokit.lie.pinocchio_so3 import PinocchioSO3
    from robokit.lie.torch_so3 import TorchSO3
    from robokit.lie.warp_so3 import WarpSO3


[docs] class SO3(abc.ABC): """SO(3) representation using quaternions. Internal parameterization: [qw, qx, qy, qz]. Tangent parameterization: [omega_x, omega_y, omega_z]. """ @staticmethod def _infer_backend( param: Union[pin.Quaternion, ArrayLike], backend: Optional[Literal["numpy", "torch", "warp"]] = None, ) -> Literal["numpy", "torch", "warp"]: if backend is not None: return backend if isinstance(param, (np.ndarray, pin.Quaternion)): return "numpy" elif _TORCH_AVAILABLE and isinstance(param, torch.Tensor): return "torch" elif _WARP_AVAILABLE and isinstance(param, wp.array): return "warp" else: raise ValueError( f"Cannot infer backend from type: {type(param)}. Expected pin.Quaternion, numpy.ndarray, torch.Tensor, or wp.array." ) @staticmethod def _get_so3_class( backend: Literal["numpy", "torch", "warp"], ) -> Union["type[PinocchioSO3]", "type[TorchSO3]", "type[WarpSO3]"]: # fmt: off if backend == "numpy": from robokit.lie.pinocchio_so3 import PinocchioSO3 return PinocchioSO3 elif backend == "torch": from robokit.lie.torch_so3 import TorchSO3 return TorchSO3 elif backend == "warp": from robokit.lie.warp_so3 import WarpSO3 return WarpSO3 else: raise ValueError(f"Unsupported backend: {backend}") # fmt: on @overload def __new__(cls, so3_like: "wp.array", backend: Literal["warp"]) -> "WarpSO3": ... @overload def __new__(cls, so3_like: "torch.Tensor", backend: Optional[Literal["torch"]] = ...) -> "TorchSO3": ... @overload def __new__( cls, so3_like: Union[pin.Quaternion, np.ndarray], backend: Optional[Literal["numpy"]] = ... ) -> "PinocchioSO3": ... def __new__( cls, so3_like: Union[pin.Quaternion, ArrayLike], backend: Optional[Literal["numpy", "torch", "warp"]] = None, ) -> "SO3": # If so3_like is already a SO3 instance, return it directly if isinstance(so3_like, SO3): return so3_like # If called directly on SO3, determine the backend and return appropriate subclass if cls is SO3: backend = cls._infer_backend(so3_like, backend) so3_cls = cls._get_so3_class(backend) return so3_cls.__new__(so3_cls, so3_like, backend) # type: ignore else: # Called on subclass, use normal instantiation return super().__new__(cls) @property @abc.abstractmethod def wxyz(self) -> Union[np.ndarray, "torch.Tensor"]: """Quaternion part of SO(3) as [qw, qx, qy, qz]""" ... @staticmethod def from_matrix( matrix: Union[np.ndarray, "torch.Tensor"], backend: Optional[Literal["numpy", "torch", "warp"]] = None, ) -> "SO3": backend = SO3._infer_backend(matrix, backend) so3_cls = SO3._get_so3_class(backend) return so3_cls.from_matrix(matrix, backend) # pyright: ignore[reportArgumentType] def as_matrix(self): raise NotImplementedError @staticmethod def exp( log_rot: Union[np.ndarray, "torch.Tensor"], backend: Optional[Literal["numpy", "torch", "warp"]] = None, ) -> "SO3": backend = SO3._infer_backend(log_rot, backend) so3_cls = SO3._get_so3_class(backend) return so3_cls.exp(log_rot, backend) # pyright: ignore[reportArgumentType]
[docs] def log(self) -> Union[np.ndarray, "torch.Tensor"]: """Return tangent vector [omega_x, omega_y, omega_z].""" raise NotImplementedError
def __repr__(self): raise NotImplementedError def __str__(self): return self.__repr__() def __mul__(self, other: "SO3") -> "SO3": raise NotImplementedError def __rmul__(self, other: "SO3") -> "SO3": raise NotImplementedError def __matmul__(self, other: "SO3") -> "SO3": return self.__mul__(other) def __rmatmul__(self, other: "SO3") -> "SO3": return self.__rmul__(other)